A closed-form solution of the multi-period portfolio choice problem for a quadratic utility function
نویسندگان
چکیده
In the present paper, we derive a closed-form solution of the multi-period portfolio choice problem for a quadratic utility function with and without a riskless asset. All results are derived under weak conditions on the asset returns. No assumption on the correlation structure between different time points is needed and no assumption on the distribution is imposed. All expressions are presented in terms of the conditional mean vectors and the conditional covariance matrices. If the multivariate process of the asset returns is independent it is shown that in the case without a riskless asset the solution is presented as a sequence of optimal portfolio weights obtained by solving the single-period Markowitz optimization problem. The process dynamics are included only in the shape parameter of the utility function. If a riskless asset is present then the multi-period optimal portfolio weights are proportional to the single-period solutions multiplied by time-varying constants which are depending on the process dynamics. Remarkably, in the case of a portfolio selection with the tangency portfolio the multi-period solution coincides with the sequence of the simple-period solutions. Finally, we compare the suggested strategies with existing multi-period portfolio allocation methods for real data.
منابع مشابه
FGP approach to multi objective quadratic fractional programming problem
Multi objective quadratic fractional programming (MOQFP) problem involves optimization of several objective functions in the form of a ratio of numerator and denominator functions which involve both contains linear and quadratic forms with the assumption that the set of feasible solutions is a convex polyhedral with a nite number of extreme points and the denominator part of each of the objecti...
متن کاملCharacterizing Solution for Stock Portfolio Problem via Pythagorean Fuzzy Approach
The portfolio optimization is one of the fundamental problems in asset management that aims to reduce the risk of an investment by diversifying it into assets expected to fluctuate independently. A portfolio is a grouping of financial assets such as stocks, bonds, commodities, currencies and cash equivalents, as well as their funds counterparts, including mutual, exchange- traded and closed fun...
متن کاملDeveloping a Mixed Integer Quadratic Programing Model with Integer Numbers for Designing a Dynamic closed-loop Logistics Network
Logistics Network Design includes network configuration decisions having long-standing influences on other tactical and operational decisions. Recently, regarding environmental issues and customer awareness and global warming closed-loop supply chain network design is taken into consideration. The proposed network for the integrated forward and reverse logistics is developed by formulating a cy...
متن کاملA hybrid solution approach for a multi-objective closed-loop logistics network under uncertainty
The design of closed-loop logistics (forward and reverse logistics) has attracted growing attention with the stringent pressures of customer expectations, environmental concerns and economic factors. This paper considers a multi-product, multi-period and multi-objective closed-loop logistics network model with regard to facility expansion as a facility location–allocation problem, which more cl...
متن کاملMulti Objective Scheduling of Utility-scale Energy Storages and Demand Response Programs Portfolio for Grid Integration of Wind Power
Increasing the penetration of variable wind generation in power systems has created some new challenges in the power system operation. In such a situation, the inclusion of flexible resources which have the potential of facilitating wind power integration is necessary. Demand response (DR) programs and emerging utility-scale energy storages (ESs) are known as two powerful flexible tools that ca...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Annals OR
دوره 229 شماره
صفحات -
تاریخ انتشار 2015